
PAD-AO3 101 KANSAS STATEC RIII MANHATTAN DEPT OF COM4PUTER SCIENCE F/6 9/2 "
RESEARCH ZN FUNCTIONALLY OISTRIBUTEO COMPUTER SYSTEMS DEVELOPE-"ETC U)
FEB 76 F J MARYANKI!, V E WALLENTINE DAA629-76-O-0108

UNCLASSIFIED CS-76-03 1EhEI/IE//IEE..
//fll///lfl;,l

AIRMICS Army Institute for Resmrch in 313 Icul do.
Management Information and GA Inst itute of Technology
Computer Science Atlanta. GA 30332

Technical Report

' * RESEARCH IN FUNCTIONALLY

-DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

Kansas State University

Virgil Wallentine

Principal Investigator

J I~

Approved for public release; distribution unlimited _

VOLLVE XVI
IMPI.MU ATIONJ OF A D.mISTrImI

13-DATA BASE SYSTEM

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

81 8 19 084

SE!CURIT'l CLAS FICATj,N OF TH4IS I'ArE w I)~. .t.,d EDisiRcr!NREPORT DOCUMENTATION PAE EFORF COMPI-FTN(FO0RM

- .G - ESSION No. '. RECSIENTrS CATALO.. NUMOLM

Co ryl P L .71EOF 0I. ~~~ ~ ~ "V fy O~pJ41
/MP LEMENTATION OF A DISTRIBUTED DATA BASE.

j!FrediMaryanski
,irgil E. Wallentine)IVDAW 29-76-G46l 8.:

PERFORUING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

11 _P
ARIA II UO",C UNIT NUMBERS

Department of Computer Science
Manhattan, KS 66506

It. CONTROLLING OFOICE NAME AND ADDRESS
UAryResearch Office FebIIM76 /

P 0 Box 12211 I 1C

Research Triangle Park, NC 27700 18 pages

1 1. MONITORING AGENCY NAME A AODIIESS(II d~fll.,a ft*M Cent"d"m Offic@i) IS. SECURITY CLASS. W th -CI*POvt)

US Army Computer Systems Command
Attn: CSCS-AT Unclassified

Ft IS.ir A 26 5. DECLASSIFICATIONiDOWNGRAOING

16. DISTRIUUTION STATEMENT (ol this R#o.,r

Approved for public release; distribution unlimited.

4
17. DISTRIBUTION STATEMENT W 1h. 1.t*act entod in Block 20. it ditlln oiv AsRpenl)

I*. SUPPLEMEN4TARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

1I I.CEY WORDS (Co.ntinue. on reves to.* ait lnec~i.mA ad Idonftf by WeekA Rnmb,)

DBMS

Distributed processing
Network Systems

-over-

DD *",1473 rDITION or I Nov Ssis oBsoL.Er Unclassified

SECURITY CLASSFICATIONC OF TRIS PAGE (When D.C. Etia...d

UNCLASSIFIED

3'CUMITV CLASSilrlCATION OF THIS PAGEI(f1%en Vega Fnfe,.d)

-ABSTRACT-

In this paper we present an overview of data base

management systems (DBMS), the motivation for distributed

data base systems (DDBMS), a set of possible network
topologies served by the distribution, the mechanisms
necessary to integrate (and communicate between) the DOOMS
system elements when distributed across a nonhomogeneous
network of minicomputers, and some implementation details on
a prototype system. The current prototype distributes the
DBMS and application program function across an IBM 370/158
and a (minicomputer) NOVA 2/10. In the near future, a third
ac, in-, the Interdeta 85 minicomputer, will be added to the
network. The DBMS used is a network system as specified by
CODASYL. The emphasis in this paper will be on the problems
posed by the heterogeneous machines and the intertask
(processor) communication system which is utilized in the
distribution of data, programs, and control.

UNCLASSIFIED

IRCUfITV CLASSVQCAT"" OF THIS PAGE(Wh~fl 0DM. 60100"d

S,,

implementation of a Distributed

Data Base System

-Technical Report

CS76-03

V.E. Wallentine and F.J. Haryanski

February 1976

Dept. of Computer Science

Kansas State University

This woark has been partially supported by the U.S. Army Re
Office Grant No. DAAG9-76-G-0108. Aoesj9 .

U.~n U1 a , oun' I Unannounced
13

v_____

tl blty Codes

Special

ANSTRA(C

In this paper we present an overview of data base management systems

(DBMS), the motivation for distributed data base systems (DDBHS), a set

of possible network topologies served by the distribution, the mechanisms

necessary to integrate (and communicate between) the DDBMS system elements

when distributed across a non-homogeneous network of mini-computers, and

some Implementation details on a prototype system. The current prototype

distributes the DBMS and application program function across an IBH

370/158 and a (mini-computer) NOVA 2/10. In the near future a third

machine, the Interdata 85 mini-computer, will be added to the network.

The DBMS used is a network system as specified by CODASYL. The emphasis

in this paper will be on the problems posed by the heterogeneous machines

and the inter-task (processor) communication system which is utilized in

the distribution of data, programs, and control.

S ~ S

I. Motivation for Distributed Data Base Systems

A. Back-End Data Base Management Systems

IC has been a long standing practice in computing to attempt to maximize

the amount of processing performed by the Central Processing Unit (CPU).

Ifenerally, this has been accomplished by reducing the amount of time the

CPU must wait for information from the slower input/output devices. Several

major developments in computer science have resulted from the desire to

maximize CPU utilization. Among these developments are interrupt driven I/0,

slave I/0 processors, direct'memory access, multiprogramming, multiprocessing,

and distributed networks.

The advent of data base management systems (DBMS) has resulted in more

efficient organization of data on secondary storage devices and the develop-

meat of powerful high-level languages for the manipulation of data. A

statement in such a data manipulation language (DML) could result in

several I/0 operations being performed. In a standard multiprogramming

environment, execution of one such DM1L statement could force the system

into multiple task switches. This would result in considerable overhead.

To reduce this overhead, Canaday, et al [1] have developed the concept of

a back-end computer for data base management. In a back-end system, a

minicomputer is used as a dedicated processor for the DML statements. The

minicomputer has exclusive access to the secondary storage devices upon

which the data resides. Whenever the host computer encounters a DNL

statement, a message is transmitted to the minicomputer indicating the

DML statement and its arguments. The back-end machine then performs the

DHL statement and all its necessary I/0 operations. In effect, the back-

end computer is treated as a sophisticated I/0 device for the host machine.

The incorporation of the back-end minicomputer Into the system reduces CPU

1

swapping on the host computer and provides for an overall increase in avail-

ability of system resources.

The two principal advantages of a back-end DBMS are the reduction in

primary memory requirements within the host computer and an increase in

overall system performance. Primary memory is reduced In the host by

moving data base functions and buffer areas to the back-end machine. In

the system being developed, the overall reduction in prJiary memory require-

ments in the host machine is 31K + N*20K where N is the number of application

programs executing in the host. Details regarding the distribution of

doftuare between the host and back-end machines are given in Section II of

this paper.

B. Distributed Systems

A back-end DBMS as originally conceived [1] consisted of a large general

purpose computer as the host machine and a dedicated mini computer as the

back-end processor. Figure 1 illustrates a typical back-end configuration.

Th. host computer executes the application programs ubish generate requests

for information from the data base. These access reqimts are sent via

the host message system to the back-end system.

Once a request has reached the back-end system, It activates

tva, DBHS and is queued at individual DBMS tasks. Each uask is scheduled

by tie back-end message system to access the data base a- number of times

linri1 the appropriate DML operation has been performed. Upon completion

cf Ehe data base operation, a message Is returned to fte application program

'ia the interve ing message systems, I/O drivers, and tie inter-computer

co aunications channel. Such messages consist of req,,,,ed data and

status condltion. on store and retrieval requests.

The DBMS configuration discussed thus far is comp~ed of two computers.

Several extensions to this basie configuration are pamable. Let us first

2

consider a network DBMS with several application and several back-end

machines (Figure 2). In this arrangement, an application program may

access any data base, provided there is a connection to the managing back-

end machine for that data base.

In all previous discussions of back-end DBMS, it has been assumed that

the back-end machine will be dedicated to data base operations. In some

cases, this restriction may inhibit full utilization of system resources.

Provided that the back-end machine has a multiprogramming executive system,

there should be no difficulty in allowina it to perform tasks other than DML

operations. In a generalized situation, a processor could be performing

DML operations on a data base while at the same time executing an application

program which requests data base information of another processor in the

system. Such a processor is considered to be bi-functional. In a generalized

DBMS network, the only restriction as to the function of a processor is

its physical connection to secondary storage. Figure 3 displays

a DBMS network with host, back-end, and hi-functional nodes.

In order to maximize system resource utilization in a network DBMS,

the workload of the nodes must be balanced. This can be accomplished if

tasks can be distributed among the processors in the network in an equitable

manner. A distributed DBMS (Figure 4) can realize this goal. In a distri-

buted DBMS, each node is bi-functional. An application program may be

executed by any processor. The selection of the application processor is

done automatically and is transparent to the user. As in previous topologies,

data base functions are limited by physical connections to the machine which

controls the I/0 device on which the data base resides.

11. Data Base Management Software

A. Central DBMS

The data base software to be used in the distributed data base network

is obtained by altering an existing data base management package. A brief

3

~.-. n ",

description of the main features of the DBMS Is given below. Details may

be found in References [2,3]. The DBMS contains three basic languages--a

data definition language (DDL) for describing the data base to be accessed

by a program, a data manipulation language (DHL) which prescribes the manner

in which the data are transferred between the application program and the

data base, and a Device Media Control Language (DMCL) which maps the data

anto physical storage.

The DDL is divided into two components, schema DDL and sub-schema DDL.

A schema DDL is employed to describe the entire data base in terms of the

q.zacteristic relati6nship between the data items. The sub-schema describes

the data base as viewed by the application process. The sub-schema provides

for limiting the access of a program to a particular portion of a data

uasc, or allowing a particular program to modify a data base for its own

purposes without affecting the use of the data base by other programs.

The DML is used to augment the host high-level language of the data

base management system. The DML provides the capability of performing complex

data set manipulations in a single high-level language statement. The host

language may be any general purpose high-level language. In keeping with

CODASYL recommendations, the DML features have been added to COBOL by

means of a pre-processor. The preprocessor translates DML statements into

COBOL for compilation and execution.

To implement the DBMS both preprocessing and execution software modules

are necessary. The preprocessing modules include the DDL schema processor,

,e DDL subschema processor, DMCL processor, and the DHL preprocessor. The

Adjor execution modules are the subschema interface (IDMS), the data base

manager (DUMS), the data base I/0 routine (DBIO), and the multitasking

control program (CAMP).

Figure 5 illustrates the actions taken when a DHL statement is executed.

5 4

A DKL statement takes the form of a call to the interface routine. The

interface routine then transmits a message instructing the DBMS routine to

perform the appropriate data base function. If the DMUL statement requires

Information not presently in the system Oata buffers the DIO routine Is

called to perform the actual I/O operation. The data obtained and pertinent

status information is transmitted back to the application program through

the DBMS and IDMS routines. Multi-tasking of the DBMS routine occurs under

the'control of the CAM<P monitor. All actions affecting the data base are

recorded on a journal tape for recovery purposes.

B. Distributed DBMS

In order to implement the DBMS system in a distributed network, the

software must be allocated across the application (host) and back-end machines.

In keeping with the philosophy behind the back-end concept, modules and tables

used in managing and accessing the data base are transferred to the back-end.

Figures 5 and 6 depict the distribution of software between the application

and back-end computers. This division is intended to minimize the number

of requests the application CPU makes of the data base manager and to keep

the amount of information actually transferred between machines at a

minimum. Inter-machine communication is accomplished by employing the inter-

computer communications channel to transmit information between the interface

routine and the data base manager. This transmission takes place under the

aegis of a general message system which is described in the next section of

this paper.

To optimize overall system performance, the DBMS, ZIO, the recovery

portions of CAM, and the recordkeeping operations must be transported to the

back-end. Since the data base operations will be performed by the back-end

machine, it is necessary to have the subschema available for validation of

the DKI. requests. Positioning the subschema in the back-end machine will

S

*

also minimize the amount of traffic on the inter-computer

communications channel.

A substantial portion of the data base software is remoed from the

application machine. Since the subschema has been moved to the back-end,

much of the validation performed by the interface routine to the present

version can be performed on the back-end machine by the D11B. The interface

routine in the back-end version need only transmit information between

che application program and the message system. The functSmms of CAMP on

the host machine are to check for abnormal termination in the application

program and to insure that the area associated with each DW task is open.

The task control functions of CAMP are handled by the mesaq system and

the operating system in a network environment.

II. Inter-Computer Comunication System (ICCS)

A. Introductory concepts

The ICCS prototype was developed to provide the requisite communication

lines between application tasks and DBMS tasks. It consists of two sub-

syqtems, as shown in Figure 7, which coordinate the exchange of both control

information and data. The Multicomputer Communications System (MCCS) executes

on the IBM 370 as a CMS machine under VM/370. The Inter-Task Communications

System (ITCS) executes on the Data General Nova 2/10 under the RDOS operating

system.

ITCS and MCCS perform identical functions, i.e. control the exchange of

messages between machines and tasks. But they were constructed under quite

diverse constraints. MCCS is a single task implementatioD of the message

control system and was targeted to execute under a single task operating

system such as CMS. 11CS is a multi-tasking version and is constructed to

run under a multi-tasking system with an efficient inter-task communication

6

4A,

system (such as those provided in real-time operating systems on mini-

computers).

The operation of the inter-task message system proceeds as displayed in

Figure 7. The application program issues DML statements. These DML requests

are converted to a series of messages to be exchanged between the interface

and the DBMS tasks. Each message is sent to a unique DBMS task in the back-

end 6ne for each defined level of multi-threading of the data base) via MCCS

and ITCS. Each is routed to the appropriate task (indicated by a unique

name) via the chosen hardware link (telecommunications, channel-to-channel

adapter, etc.). Upon receipt of a message at ITCS, it is queued until

requested by the DBMS task. Upon completion of the DML function, messages

are transmitted back to the application program interface. These messages

compose the response to the task in the host that issued the DML. These

messages are again transmitted via the MCCS/ITCS communication link.

Messages (both data and control) are directed to a particular task

via a SESD procedure; and me ,sages are requested from a task via a RECEIVE

prvkedure. Their usage in our prototype system in a back-end DBMS environ-

meat Is given in Figure 8. The SEND procedure identifies the name of the

task addressed by a TOID parameter. The RECIEVE procedure optionally identifies

a particular task to receive a message in FROMID, or receives a message

from any task on a first-come-first-serve manner. RECEIVE can also specify whe-

ther the task issuing the receive is to wait for that message or proceed

unconditionally. In the remainder of this section we describe the function

and structure of ICCS as it currently exists. And we further discuss its

dependence on currently available software and hardware communications

components.

B. ICCS Software Structure

The functional characteristics of the ICCS are as follows:I 7

1. it provides synchronization between tasks as well as processors;

2. it provides a message exchange system between tasks through

which both data and control information can pass;

3. it handles buffer management in both the host and back-end

processor;

4. it isolates the application program interface and the DBMS tasks

from any knowledge of the.physical location of the others, i.e.

whether the host and back-end are connected locally or remotely;

5. it provides a well-defined interface (the CALL statement) to

both the interface and the DBMS task; and

6. it is modular and hierarchical in nature so as to permit the

straightforward modification necessary to adapt ICCS to most

operating and teleprocessing system environments.

The hierarchical structure of ICCS will be discussed in terms of

its integration into the operating, 1/0 control, and teleprocessing systems

on conventional computers. Figt,- 9 displays the different levels of

sottware necessary for application programs to do I/O. For local connections,

the I/O driver isolates the operating system from interrupt handling. In

order to handle remote connections, the line protocol handles error detection

dn, retransmission, code transparency, code conversion and line control.

Za all cases the application program activates the operating system by a

Supervisor service call. But at this level the application programmer still

muft do his own synchronization, buffer management, and routing (addressing

Lo machine as well as task). The message system ICCS vas created to relieve

the application programmer of such complexity.

The currcnt structure of ICCS is presented in Figure 10. The interface

gets control from the application program via the CALL. The interface in

turn invokes ICCS with a sequence of fixed block messages which compose the

B

v-. data and/or request to be made of (sent to) a DBMS task. The CALL specifies

only a task name as the entrance to the DBMS, and has no concern as to its

location. MCCS either sends the sequence of buffers to IT S (if it has

space available in its buffer space) or queues the messages in its own buffer

space until space becomes available. If the application program needs to

walt for a result, it will issue another CALL to MCCS to receive data from

* ,a task. A receive can specify the wait or proceed option. This is noted

by MCCS. When ITCS sends a response (also using the CALL interface

* between ITCS and the DBMS task), MCCS communicates the message to the appro-

priate application program - again by its unique process (program, task)

name. (See Figure 11 for message flow possibilities.)

Since ICCS is comprehensive in its message exchange capabilities, an

application to distributed data bases is possible. That is, since communi-

cation is at the task level, the DBMS task may be running on any machine

in the network. In either case, ICCS will perform the correct transmission

of (route) buffers. See Figures 11 and 12 for the flow of control in ICCS

and the movement of data buffers through the distributed system. Note

(See Figure 11) that the application program can activate DBNS tasks in

6the host (the machine on which it is executing) using path 1; and it can

invoke a distributed DBMS task via path 2. While the prototype system

message flow for two data bases is indicated in Figure 11, the message

flow necessary in a system of multiple (more than 2) data bases on multiple

machines is achieved by adding new message systems. (MCCS is needed if the

new operating system is a single task system and ITCS is needed if it is a

multi-tasking system.). Note that an arrangement of four copies of a

message system (each being MCCS or ITCS) establishes ICCS between any

application program and any number (from 1 to 4) of DMS tasks in the network

topology of Figure 4. Since ICCS supports a "store and forward" function on

buffers, there need only be a possible route between machines; and It need

not be direct.

When an application program sends a message to a DBMS task in the same

machine, ICCS queues messages destined for a host DBMS task (a OtS machine

in the prototype) in the "out" list of MICS first. Then It merely links

it to the "in" list of MCCS or ITCS. (See Figure 12 for details.) In

case a distributed DBMS task is to be invoked, the messages are sent (by

MCCS or ITCS via the hardware connection) to be queued (when buffer space

it; available) in ITCS or MCCS. The. reverse operation is achieved In the

b&ae manner. This generalized message exchange mechanism achieves the

synchronized operation of the application program and the DBMS tasks. In

irder to avoid deadlock on message buffers, which can arise when incoming

-.-3sages are allocated all buffers, the buffer allocation algorithm of the

T.H.E. system [4] is implemented. This scheme reserves a minimal amount

1)f buffers for outgoing messages and maintains a safe "region" of buffer

allocation to input, output, and computing processes.

C. Heterogeneous architecture implications

Both hardware and software s;:uctures of various architectures impact

the distribution of the DBMS. In the hardware category, application programs

must be portable to an appropriate machine. In the current prototype, any

language (which has compiler support in a particular machine) which supports

the CALL statement to an external procedure provides such portability.

F.rth:r architectural dependence arises In the development of the DBMS for

each machine. These considerations are addressed in another paper [5].

The last consideration for hardware dependency involves the characteristics

of the inter-computer connections. This only impacts the particular line

,rotocol (This must be compatible between machines. In our prototype,

I3M biary synchonous is used.) And since the ICCS system utilizes a

coinercially available operating system in each machine, it is isolated

from the particular hardware connection.

10

A second order impact on the distribution of the software is due to the

operating system services in a particular machine. Vendor-supplied software

systems were viewed as too large to construct. Therefore, a minimal set

of characteristics are presented below which must be available in the

oterating system of each machine. These items are most appropriate for mini-

computer real-time executivessince it is basically a mini-computer network

we wish to accommodate.

1. The system must be multi-tasked with inter-task communications

which minimally exchange a one word (16-bits) parameter.

2. It must support dynamic priority change via a system task. ICCS

uses this feature to schedule itself at the highest priority over

application and DBMS task functions since it manages buffer space.

3. It must support a synchronizing primitive to protect the buffer

space manager from unwarranted intrusion in its update process.

This mechanism can be semaphores, locks, or the ability to disable

interrupts for a short period of time. In the portable version

of ITCS (written in FORTRAN with real-time extensions) the

interrupts are disabled and later enabled via a protected (special)

system call. This call is unavailable to the application program

due to the access validation within the system module. This module

(very small) must be added to each machine's system modules. This

feature is necessary since the SEND and RECEIVE functions are

independent tasks which utilize a common buffer manager.

4. The system need only support basic direct and basic sequential

access methods.

5. The system command processor must be structured as a task with which

messages can be exchanged. This permits an operator to distribute

tasks around the system from any machine (as long as it is not

currently in running state).

IV. Summary and Future Enhancements

This paper develops the theme that a data base management system and

an inter-task (machine) communications system are the central elements of

a data base accessing system which is distributed in a network of mini-

computers. The data base management languages (DML, DDL, and DMCL) isolate

the user from the file and command system; and the message exchange facility

makes the network transparent to the user, the application program and the

Anterface between the application program and DBMS task. Furthermore, the

Data Manipulation Language (DML) establishes a "clean" and well specified

interface to utilize in distributing applications and DBMS tasks across

the network.

At present the network has two nodes with the anticipation of adding

two more mini-computers locally and one additional mini and one large main

frame computer at remote sites. Since the current system does not permit

dynamic movement of tasks in the network (an operator must move them), a

network control language (NCL) is being developed to define resource alloca-

tion in the network. The NCL operations are then converted to operating

system dependent (in a particular machine) resource control functions.

Further, refinement of the inter-computer communications system

to support the communication between a distributed operating system's

4odules is proceeding.

12

AI IS I I I

Igre . Ner DB4 wt

bm I

FWer 2. win&rk DBMS= I-AW

mgma to GUAT19C SS 33

L_ _ _ ___A [. ucvnMC

SF IA., 1S [

USti SSTZ4 oIIJrCT 1i.3 S *' VAE WO rxrs)
,i -- A-LA I 4SIIS SIJISCI I il t

I
Fr AC•

OUT 1bo(4A fo am. at (c t[~~I ICES II.-

* VOI~1~ 1I '~.~~ NESSACE aIJ.L.. (tICS)

AIXIe

-- " -DATA iUK9 fIA GEil

BC. .,,,
DATA JIiE ./0 . ,COTROL

Fire 5. DBHS Software Distribution

Figure 7. ApplIcation and DBMS Task
Relationship In a Data Base

SA avi romNent

A To APPL. CPU 0 D M C L AA 1sSTE11ACX t 1_141 INTERFAC-
S 10BASE S A VE OW I ,r U ITRPC

BAS DAT 4 S nutI tO~s P ~T AD L E S BUFFER B A S E A R E ASS-C..AD
"

AREA ClIE(-- * S ,[.,ne) CAIL. sEI (.1 '%_.4d

A R A APP LI-i'xE APL OAT•
• .LT - CACAON * LL END VW CALL SEDI'VIS ATA BASE

D S U i -
' S' S TE'U(T:'A E A

Y ST E . AND SNDA.I APE e P H ERA L D R I V E RS toeVAN P L IC.
E 'CALL kN EI. CALvi') IV

11c~t A~CDU£ G E EsI CRE

istS SYSTI oE, ,0

S Y S T E M 010' ANSEDA
O CID PMEDU,:

VIATUAL TIP.. IE (V4) -
DATA BASE

COMMNICAIOi , 11b D111WO

"iCure 6. Distribution of Software in .t

Back-End Computer

MkA IAi, Wn W,-10 1

ACUI '. I0 ;IIoi11A M 1 ,

Figure 8. Integrated IDMS System

Amm. v~~ 74 1 IN

L. Ca~I

In I
con a NNN..

Wa SEA,.CASA

*P At

Calle n 4.09b $

Fiue90W ofwr tutr

aa

Fiur 9.10Sfwr tutr

Fiur 11.CII FlwofMs ages iLna

~~LtUA ~ ~ O RE. SA - CEIPT l~
if ~ ?.L Ai

SA~l A/A IOWN vs/a , v ." , stt rSl sl.3

v".:INL'00
1

NVIE ___L" tz;? N~AA IUSI.N041TA811 ~~ 4 AS I M SI I A

I C I CW1 ToIA ...A*AMC C'v

S ~~a
I l I llI

I I P ;-ISI7L
haou ftAS . M S Ims TAK&NS s U'

IN M S. V.S

Figure 10. Structure of Message System to'1et
* in Prototype Configuration ~

15Fgure 12. State transition diagram
for Application Program
DIMS Task Message Exchiangsv

15t-U

V. References

1. Canaday, R. HI.. et al., "A Back-End Computer for Data Bass
banagement." CACM 17, 10 (Oct., 1974) pp. 575-582.

2. IS DDL Reference Guide, Cullinane Corp.

3. IDHS DML Prograiner's Reference Guide, Cullinane Corp.

4. bron, C. Allocation of Virtual Store in the T.H.E. Multipro-
Xraming System. In C.A.R. Hoare and R.H. Ferroti (ed.) Operating
System Techniques, pp. 168-193. Academic Press, 1972.

5. Wallentine, V.E., et.al. On the Implementation of a Backend
Data Base Management System. Technical Report. Dept. of Computer
Science, Xansas State University, 1975.

V1. Aclcnowledgements

Teathors wish to acknowledge the programming effort of Sheldon Fox,

Lee Allen, and Rich McBride. Their dedication to the job is appreciated.

16

